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We study chemical patterns arising from instabilities in reaction-diffusion-advection systems under the
influence of shear flow. Turing pattern formation without shear flow can occur in an activator-inhibitor system
as long as the diffusivity of the inhibitor is larger than the diffusivity of the activator. In the presence of shear
flow, a homogeneous steady state can become unstable even if this condition is not satisfied. Chemical patterns
arise as a result of this instability. We study this instability in a simple system consisting of two layers moving
relative to each other. We carry out a linear stability analysis showing the onset of the instability as a function
of the relative speed between the layers. We solve numerically the nonlinear reaction-diffusion-advection
equations to obtain these patterns. We find stationary, oscillatory, and drifting patterns extending along each
layer. We also find regions of bistability that allow the formation of localized structures. The instability is
analyzed in terms of Taylor dispersion.
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I. INTRODUCTION

Spatiotemporal chemical structures arising in controlled
experiments, such as the ones observed in the Belousov-
Zhabotinskii �BZ� reaction �1� or the chlorite–iodide–
malonic acid �CIMA� reaction �2�, can be explained by dif-
ferent mechanisms of pattern formation. Waves of chemical
activity in the BZ reaction are caused by an excitable chemi-
cal system coupled to molecular diffusion �3,4�. The patterns
in the CIMA reaction can be explained with a mechanism
first proposed by Turing for biological morphogenesis �5�.
This mechanism consists of two reacting chemicals with dif-
ferent molecular diffusivities, where one substance �the acti-
vator� increases its concentration due to a feedback process,
while the other �the inhibitor� tends to diminish its concen-
tration. Patterns arise if the diffusivity of the inhibitor is
sufficiently larger than the diffusivity of the activator. This
mechanism may also explain the formation of biological pat-
terns �6�.

The interaction between molecular diffusion, chemical re-
actions, and fluid flow results in other mechanisms of pattern
formation. In the differential flow instability �DIFO� mecha-
nism, two species flow with different velocities leading to an
instability of the homogeneous, non-patterned state �7,8�.
The flow-distributed oscillation �FDO� mechanism generates
patterns as fresh chemicals are fed to a flowing oscillatory
reaction �9,10�. Convective fluid motion induced by a propa-
gating autocatalytic front results in axisymmetric and non-
axisymmetric fronts in vertical tubes, fingering in Hele-Shaw
cells, and convective vortices in larger containers. Shear flow
can induce a chemical pattern in a reaction-diffusion-
advection mechanism �11–13�. This shear-induced mecha-
nism is different from the DIFO mechanism since both

chemicals have the same fluid velocity, and it is different
from the FDO mechanism since the chemical reaction is not
oscillatory. The shear-induced mechanism also differs from
the Turing mechanism since a pattern can form even if the
diffusivity of the activator is larger than the diffusivity of the
inhibitor. Previous studies for this instability consisted of a
linear stability analysis of the homogeneous state under dif-
ferent conditions for shear flow. Evans �11� studied a simple
system where a moving layer is coupled to a stationary layer,
allowing for different species to diffuse across the layers, but
not along the layers. Spiegel �12� used a linear velocity pro-
file with a multiple-scale analysis to show a shear-induced
instability. Coupling of Poiseuille flow to the Brusselator
model showed that an instability can occur even if the con-
ditions for Turing pattern formation are not met �13�. Nu-
merical calculations using this model �13� showed stationary
patterns in a reference frame comoving with the average ve-
locity of the flow. Although these studies showed the insta-
bility mechanism, there is little work on the spatiotemporal
structures arising from the instability. It is the purpose of this
work to study such structures.

In this paper, we will study the formation of patterns due
to shear flow using a two-layer system, where one of the
layers moves relative to the other. Studies of Turing pattern
formation in a two-layer model showed the existence of os-
cillatory patterns due to the coupling between the stationary
layers �15,16�. Experiments in coupled layers showed pat-
terns modulated by one another depending on the strength of
the coupling �17�. In our model, we will use a reaction-
diffusion system based on the Brusselator kinetics, allowing
diffusion along each layer and across the layers �15�. The
relative motion of the layers will provide the necessary shear
to trigger an instability. Our analysis will not be limited only
to the shear-induced instability, but will also include the ef-
fects of shear flow on Turing patterns. We will carry out a
linear stability analysis of the homogeneous solution, show-
ing the shear-induced instability in this system. Numerical
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solutions of the nonlinear equations will show different types
of spatiotemporal behavior.

II. THE REACTION-DIFFUSION-ADVECTION
EQUATIONS

Our system consists of two coupled layers in relative mo-
tion with one another. We describe the chemical reaction
using the Brusselator model. This model was previously used
to describe Turing patterns in coupled layers �15� and shear-
flow instabilities in a Poiseuille flow �13�. Our equations
consists of four coupled reaction-diffusion-advection equa-
tions:
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Here Xi and Yi represent the concentrations of chemicals
X and Y, respectively, in the corresponding layer �labeled
with the subindex i, either 1 or 2�. The Brusselator model
provides the reaction terms

f�X,Y� = A − �B + 1�X + X2Y �5�

and

g�X,Y� = BX − X2Y . �6�

The layers move in opposite directions with a relative speed
V as seen from the other layer, the parameter d is the ratio of
the corresponding molecular diffusivities, while the param-
eter � corresponds to the strength of coupling between the
layers. We are interested in the effects of shear flow in a
chemical system; therefore we will keep the parameters of
the reaction terms constant through the analysis, setting the
parameters A=10 and B=100. This choice of parameters
provides a homogeneous steady state with X0=10 and Y0
=10. Without shear motion and without coupling, each layer
will undergo a Turing instability for d�dc=1.2345. We will
focus on the effects of the speed and coupling for different
values of d.

We introduce perturbations to the steady state of the form
Xi=X0+Xi�e

�teikx and Yi=Y0+Yi�e
�teikx arriving at a set of

homogeneous equations for the amplitudes Xi� and Yi�:
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Here we define

Fk = fx − k2 − � − � and Gk = gy − dk2 − d� − � . �8�

The corresponding partial derivates of the reaction functions
fx, fy, gx, and gy are evaluated at the homogeneous steady
state. We obtain the dispersion relation between the growth
rate � and the wave number k by requiring the determinant
of the system to be zero. Equal diffusion coefficients �d=1�
will result in a stable homogeneous state, since the diffusiv-
ity along the layers will simply lower the growth rate by k2.
The resulting system consists of shear flow and diffusivity
only across the layers, which is stable for d=1 �11�. There-
fore we study the cases that allow for pattern formation �d
�1�. Our results for different values of the speed and inter-
layer diffusion will be presented in the next section.

We also carry out a numerical solution of full reaction-
diffusion-advection equations. The space is discretized on a
one-dimensional grid. The partial derivatives are approxi-
mated using finite differences on the grid. The time evolution
is carried out using a forward simple Euler method, with a
time step small enough to avoid numerical instabilities due to
the advective and diffusive terms. These solutions provide a
full spatiotemporal description of the system. In this work
we limit ourselves to the study of the long-term behavior.

III. RESULTS

We carry out a linear stability analysis of the homoge-
neous steady solution of Eqs. �5� and �6� with d=0.5 as our
diffusivity ratio. We set the value of the parameter � to 25,
unless otherwise noted. With this value the diffusivity of the
inhibitor is smaller than the diffusivity of the activator; there-
fore the homogeneous state is stable for no fluid flow. This is
illustrated in Fig. 1, where the curve corresponding to the
real part of the growth rate �Re���� is always negative for
fluid speed zero �V=0�. In the same figure, we also display
Re��� as a function of the wave number k for different val-
ues of the relative fluid velocity. All curves have a value of
Re���=−0.5 for k=0, indicating the stability of the homoge-
neous state in the absence of diffusion. As we increase the
value of V, there is still a local maximum at k=0, with a
local maximum appearing away from k=0. Between the two
maxima there is a cusplike minimum where the branch of the
second highest eigenvalue overtakes the initially highest
branch. At this point, there is more than one eigenvalue with
the same real part. The maximum with k�0 increases as the
fluid speed increases. The maximum is positive at V=25,
indicating an instability caused by the fluid flow. We also
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notice that the wave number corresponding to the maximum
real growth rate decreases as the velocity increases.

We test the results of the linear stability analysis by solv-
ing numerically the full reaction-diffusion-advection equa-
tions with small random perturbations of the homogeneous
steady state as our initial conditions. For this choice of pa-
rameters, the linear stability analysis provides a critical ve-
locity Vc=24.9, and a critical wavelength �c=2� /kc=3.25.
We chose a domain size equal to 40 spatial units to accom-
modate a number of critical wavelengths. We find that the
perturbations died out for speeds less than 25.1, close to the
result of the linear stability analysis on an unbounded me-
dium. For speeds greater than 25.2, the system evolves into a
steady patterned state. In Fig. 2 we display two patterns
formed with this set of parameters but with different fluid
velocities. In this figure, we show the spatial variation of the

concentration X along one of the layers. The pattern formed
with fluid velocity V=55 evolved from small perturbations to
the homogeneous steady state as described above. The pat-
tern consists of a peak intercalated by a concentration mini-
mum. The other pattern displayed in Fig. 2, obtained with the
same parameters but a fluid velocity of V=18, has two dif-
ferent peaks that are separated by a relative minimum and an
absolute minimum. The fluid velocity for this pattern is much
lower than the critical velocity Vc for the shear-induced in-
stability calculated from the linear stability analysis. We ob-
tained this pattern by slowly reducing the speed correspond-
ing to the previous pattern. The pattern with two peaks
appears for speeds below V=46.0. The presence of a relative
minimum between two peaks resembles the “black-eye”
structures observed in Turing patterns �14,15�. Therefore
there is bistability between patterns and the homogeneous
steady state. We study the bistable region by continuing the
reduction of the fluid velocity as shown in Fig. 3. This figure
displays the absolute maximum of the local concentration X
as a function of the fluid velocity. Here we also display the
value of the concentration X for the homogeneous steady
state indicating its stability. We found that patterns formed
with higher fluid velocities have a higher maximum. A re-
gion of bistability between the homogeneous steady state and
the patterns occurs for fluid velocities below the critical ve-
locity for the shear-induced instability. For values of fluid
velocities below 17.2 we did not find a stable pattern.

The bistability between the patterns and the homogeneous
steady state allows for the formation of localized structures
as shown in Fig. 4. In this figure, we display the concentra-
tion X as a function of position showing localized structures
surrounded by a homogeneous state. Each individual pattern
forms by choosing different initial conditions for the
reaction-diffusion-advection equations. Each initial condition
corresponds to a spatial truncation of the extended pattern,
filling the remainder of the space with the homogeneous so-
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FIG. 1. Real part of the growth rate �Re���� as a function of the
wave number k for different layer velocities V. Here d=0.5 and �
=25, resulting in a stable homogeneous steady state since Re���
�0 for V=0 �dotted line�. Larger fluid velocities V result in
Re����0.
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FIG. 2. Patterns formed by the shear-induced instability. We
display the concentration of the variable X in one layer as a function
of position x. The solid line corresponds to V=18. The dotted line
corresponds to V=55. Here d=0.5 and �=25.
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FIG. 3. Maximum concentration of the variable X for shear-
induced patterns as a function of layer velocity V. The horizontal
straight line at X=10 indicates the concentration for the homoge-
neous steady state. The solid lines indicate a stable state, where the
dotted lines indicate an unstable state. There is a region of bistabil-
ity between patterns and the homogeneous steady state. Here d
=0.5 and �=25.
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lution. In this manner, we achieve patterns with a definite
number of peaks and valleys. The smallest localized struc-
ture has only one minimum surrounded by two peaks of
different height. Other structures present two to four absolute
minima intercalated by a smaller relative minimum between
them. The relative minimum is surrounded by two peaks of
uneven height. The larger the size of the structure, the more
it resembles the extended pattern. Localized structures, like
the ones arising from the shear-induced instability, are also
found sin other types of instabilities. Similar structures were
observed in models of Turing pattern formation, such as the
Brusselator model �18� or the more realistic chlorine
dioxide–iodine–malonic acid model �19�. Experiments with
the Belousov-Zhabotinskii reaction �20� also observed local-
ized structures.

While shear flow induces an instability on a stable station-
ary reaction-diffusion state, its effect on an unstable state can
either suppress or enhance the instability. In Fig. 5 we show
the real part of the dispersion relation using the same set of
parameters with the exception of d=1.65, which is larger
than the critical value for the instability. This is shown in the
curve for V=0, where there is a range of unstable wave num-
bers �Re����0�. As we increase the speed of the shear flow
�V=7� the curve is lowered, reducing the range of unstable
wave numbers. For a somewhat larger speed �V=9�, there is
no unstable wave number, so the Turing instability disap-
pears. However, for an even higher speed �V=12�, the real
part of the growth rate once again takes positive values. In
other words, the Turing instability is first washed out by the
shear flow, making the homogeneous solution stable, and
then again the system is destabilized by a higher fluid veloc-
ity. We show the effect on an already formed pattern in Fig.
6, where we compare two Turing patterns, one with fluid
flow and the other without fluid flow. Here we chose the
relatively low value of V=7 where the Turing instability is

not suppressed, but its dispersion curve is diminished �Fig.
5�. The pattern with advection has a wavelength close to the
original Turing pattern but with a smaller amplitude. We also
notice that, while the Turing pattern has peaks that are sym-
metric relative to the position of maximum concentration, the
pattern with shear flow does not have this symmetry. Increas-
ing the speed beyond V=7.1 takes us into the stable region.
The homogeneous steady state remains stable for speeds up
to V=10.7, where a new instability occurs.

Using the numerical solution to the equations, we find
oscillatory patterns coexisting with the stable homogeneous
state. In Fig. 7 we plot the concentration as a function of
time for V=7.5 observing a pattern that resembles a standing
wave. Each point of the space oscillates with a set amplitude,

X
X X

X

x coordinate

x coordinate x coordinate

x coordinate

0

6

12

18

0 25 50 75 100

0

6

12

18

0 25 50 75 100
0

6

12

18

0 25 50 75 100

0

6

12

18

0 25 50 75 100

FIG. 4. Localized patterns formed by the shear flow instability.
The four different steady patterns evolve from different initial con-
ditions. Here d=0.5, �=25, and V=24.
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FIG. 5. Real part of the growth rate �Re���� as a function of the
wave number k for different layer velocities V. Here d=1.65 result-
ing in positive values for Re��� and V=0, indicating the instability
of the homogeneous steady state �dotted line�. For V=9, Re���
�0, making the homogeneous steady state stable. For V=12, the
maximum value of Re��� is positive, indicating an instability. Here
the value of � is set to 25.
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FIG. 6. Concentration of the variable X in one layer as a func-
tion of position x. The solid line indicates a Turing pattern formed
by the reaction-diffusion mechanism alone �V=0�. The dotted line
corresponds to the same pattern with shear flow �V=7�. Here d
=0.5 and �=25.
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without changing its position. Each oscillatory segment re-
peats itself after a certain spatial distance. This pattern was
obtained starting with a Turing pattern and gradually increas-
ing the fluid velocity. Increasing the fluid speed to V=8.0
leads to oscillations that are no longer localized. Figure 8
shows a pattern similar to the one in Fig. 7 but where the
oscillations are no longer localized. There is a drift of the
oscillatory region to the left. We also obtained the same pat-
tern drifting to the right using different initial conditions.
This is consistent with the fact that the equations do not have
a preferred direction, since both layers move with the same
speed but in opposite directions.

The disappearance of the Turing pattern with increasing
fluid flow, and the consequent reappearance of an instability,
depends also on the strength of the coupling between the two

layers as represented by the diffusivity parameter �. In Fig. 9
we show the relative maximums of the dispersion relations
�Re���� as a function of the velocity for different values of
�. For V=0 we find that the maximum growth rate is 9.9
corresponding to the Turing instability. As the velocity be-
gins to increase, this maximum decreases for the values of �
studied in Fig. 9 ��=21, 25, and 27�. The case for �=25 was
the one we studied in Fig. 5, where we display the full dis-
persion curves, showing a transition from Turing instability
to a stable homogeneous state. This is shown in Fig. 9, where
we display the maximum real part of the growth rate decreas-
ing and becoming negative with increasing speed. We also
notice that as we increase the speed a secondary relative
maximum appears; this maximum eventually becomes larger,
while the original maximum disappears. The existence of
two maximums in the dispersion relation can be observed in
Fig. 5, where the curve for V=7 contains two relative maxi-
mums, one of them positive. We can also notice in Fig. 5,
that the curve corresponding to V=9 has only one maximum
with negative value. Increasing to V=12, the maximum is
now positive, signaling a new instability. The presence of the
two maxima in the dispersion relation �Fig. 5� is indicated in
Fig. 9 by two different curves for each value of �, one of the
curves monotonically decreases from a maximum at V=0,
while the other increases from the point where the second
maximum appears. While the curves for �=25 descend to
negative growth rates, the curves for �=21 always remain
positive, indicating that there is always an instability regard-
less of the value of V. In this case the diffusive coupling
between the layers is too small to result in the disappearance
of the instability. For �=27 there is a larger range of speeds
where the homogeneous state is stable compared to the re-
sults for �=25. In this case ��=27�, there is also a range of
velocities where the dispersion relation has no relative maxi-
mum, the dispersion relation monotonically decreases from
Re���=0, with all values of the real part of the growth rate

FIG. 7. �Color online� An oscillatory pattern induced by shear
flow �d=0.5, �=25, and V=7.0�. The pattern resembles a standing
wave.

FIG. 8. �Color online� An oscillatory pattern induced by shear
flow �d=0.5, �=25, and V=8.0�. The pattern resembles a standing
wave slowly drifting to the left.
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FIG. 9. Maximum value of Re��� as a function of layer velocity
V. Here we chose d=1.65; consequently there is a Turing instability
at V=0. For layer coupling �=21, the maximum Re��� is always
positive, indicating that the homogeneous steady state is always
unstable. For �=25 and 27, there is a range of velocities where the
maximum Re��� is negative, indicating that the homogeneous
steady state is stable.
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being negative. Increasing the flow speed leads to a new
maximum in the dispersion curve. This maximum appears
once the speed reaches the value of V=12.3. At this speed
the maximum is negative, therefore all growth rates are nega-
tive, but for speeds greater than 15.3 the maximum becomes
positive indicating instability. This instability has a nonzero
imaginary part of the growth rate near the threshold indicat-
ing the possibility of a convective or oscillatory instability.
Close to the initial Turing instability, the imaginary part of
the growth rate is zero.

The shear-induced instability can be understood in terms
of Taylor dispersion. Taylor dispersion provides an effective
diffusion coefficient for diffusive concentrations in a shear
flow. Taylor’s original work involved fluid flowing in a cy-
lindrical pipe of radius a under Poiseuille flow conditions
�21�. The effective diffusivity approximation is valid once
there is enough diffusion across the pipe, this corresponds to
a time significantly larger than a2 /D. For two layers moving
relative to one another the corresponding effective diffusivity
is equal to Deff=D+V2 / �8��, valid after a time of the order
1 /� where enough interlayer diffusion has taken place �22�.
Applying this to the ratio of diffusivities between the inhibi-
tor �Dv=d� and the activator �Du=1� we find

deff =
d + V2/�8d��
1 + V2/�8��

which for large speeds gives deff�1 /d. That is, for suffi-
ciently high speeds the ratio between the diffusivities can be
reversed. The Turing instability is triggered when the diffu-
sivity ratio d is larger than a critical value dc�1. We can
accomplish this with an effective diffusivity using a suffi-
ciently large speed. We can begin with a homogeneous
steady state that is stable at zero relative velocity, where the
diffusivity of the activator is larger than the diffusivity of the
inhibitor �d�1�, then increase the velocities to obtain an
effective diffusivity greater than 1, eventually becoming
greater than the critical diffusivity dc for Turing pattern for-
mation. Taylor dispersion can provide the instability mecha-
nism, contrary to what was found with the approximations of
Ref. �12�, where the Taylor dispersion term led to a stabiliz-
ing mechanism.

Taylor dispersion also helps us to understand how a ho-
mogeneous steady state with a Turing instability can become
stable under shear flow. If the diffusivity ratio d is larger than
the critical value, increasing the fluid velocity will tend to
diminish Taylor’s effective diffusivity below the critical
value, eventually making it 1 /d, which is less than 1. Using
the formula for the effective diffusivity, the initial diffusion
coefficients, and the critical value dc for Turing instability,
we can calculate the velocity required for the effective dif-
fusivity to be equal to the critical value for Turing pattern
formation. In Fig. 10 we show these results and compare
them with the ones obtained with the two-layer model. In
this figure, we find the critical velocity for an instability for
different values of the original ratio d. For d�1, both meth-
ods provide a critical speed for a shear-induced instability.
However, with a very small diffusivity ratio, Taylor disper-
sion gives a critical velocity close to zero, while the full
solution requires a much larger value. For larger diffusivity

ratios but still d�1, the results are closer to each other. In
both cases there is a threshold for d, where no velocity will
trigger an instability. In the case of Taylor dispersion the
threshold corresponds to 1 /dc, the asymptotic value of deff.
For diffusivity ratios d�1 and relative velocity V=0, we
find the Turing instability if the ratio d is greater than the
critical ratio dc. Increasing the speed of the layers will reduce
the effective diffusivity, eventually lowering it below the
critical diffusivity ratio, stabilizing the originally unstable
state. This is shown in Fig. 10 where small velocities in-
crease the ratio d required for a Turing instability, for both
the results based on Taylor dispersion approximation and the
results based on the full solution. However, as we increase
the velocity, the Taylor dispersion results keep increasing the
value of d for the instability, while the full solutions deviate
completely from this trend. As we increase the velocity, a
new instability appears that cannot be described by Taylor
dispersion. According to Taylor dispersion, for every d�1
there is a velocity that makes the system stable. For the full
solutions, unstable states with d greater than 1.8 cannot be
stabilized by shear flow. For values of d slightly below 1.8
the system can be stabilized, but an instability reappears as
the speed is further increased. For unstable states with d
slightly above dc the instability disappears and will not reap-
pear.

IV. EXPERIMENTAL APPLICATIONS

The theoretical Brusselator model is useful to understand
pattern formation in reaction-diffusion systems, although it is
not derived from a specific chemical reaction. However, we
can estimate the dimensional values of the parameters � and
the relative velocity V by using the diffusivity of 2.0
�10−5 cm2 /s and a wavelength of 0.3 mm typical of Turing
patterns. This can be achieved by multiplying the reaction
terms by a dimensioned constant 	=0.35 1 /s while consid-
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FIG. 10. Critical diffusivity ratio for instability of the homoge-
neous steady state as a function of layer velocity V. The solid lines
correspond to results from the linear stability analysis. The dotted
lines correspond to modifying the diffusion coefficients using the
Taylor dispersion limit. Here the parameter � is set to 25.

VASQUEZ, MEYER, AND SUEDHOFF PHYSICAL REVIEW E 78, 036109 �2008�

036109-6



ering Turing patterns at the diffusivity threshold dc=1.2345.
In this way we obtained a dimensioned coupling constant �	
and a dimensioned velocity V�D	 making our typical veloci-
ties of the order of 0.6 mm /s. Experiments to obtain shear-
induced patterns can be carried out in cylindrical tubes,
where the correction for the Taylor dispersion diffusivity is
given by a2V2 /48D, where a is the tube radius. Using this
correction and matching it to the correction in the two-layer
system �V2 / �8��� results in tubes of diameter around
0.2 mm, which can be achieved in microfluidic systems.
Studies in larger-diameter tubes will require new calculations
that will match not only the parameter �, but also the correct
tube geometry.

V. CONCLUSIONS

We have shown that shear flow can induce chemical in-
stabilities in a two-layer model. This instability can occur
even if conditions for Turing instability are not satisfied,
namely, if the diffusivity of the activator is larger than the
diffusivity of the inhibitor. This behavior can be understood
in terms of the ratio of effective diffusivities due to Taylor
dispersion. If the diffusivity ratio between the inhibitor and
the activator is less than 1, the effective diffusivity ratio in-

creases with increasing layer velocity, allowing it to increase
beyond the critical diffusivity ratio for Turing pattern forma-
tion. In a system with an initial Turing instability, a slow
shear flow tends to suppress the formation of a Turing pat-
tern. In this case, Taylor dispersion reduces the effective dif-
fusivity ratio, thus inhibiting Turing pattern formation. How-
ever, for faster shear flow our results show that the
homogeneous steady state is unstable. This result cannot be
explained by the Taylor dispersion approximation, since in
this case Taylor dispersion always reduces the effective dif-
fusivity ratio. Our numerical solutions of the reaction-
diffusion equations led to several spatiotemporal patterns,
such as steady patterns of fixed wavelength. We found re-
gions of bistability that allow the formation of oscillatory
patterns, as well as localized patterns confined inside a ho-
mogeneous steady state. Since experiments in chemical pat-
tern formation take place in liquids or porous media such as
gels, experiments can be designed to test the effects of shear
flow.
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